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ABSTRACT 

A Pascal program to compute McCabe's control flow complexity metric for 
FORTRAN modules is presented. McCabe's metric which is called the cyclomatic 
number gives the size of any basis set of control flow paths through a program 
module. McCabe's metric is a useful indicator of the level of difficulty 
required to test and maintain a program module. 
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I NTROOUCT ION 

McCabe's cyclomatic number (denoted v(G)) is a control flow comolexitv 
measure derived from graph theory by Thomas J. McCabe [11. It measures the 
size of the smallest set of ·oaths which will generate every possihle oath 
through a program modul~. This set may be thought of as a basis set (of 
control flow oaths) for the module. 

The cyclomatic number has been proposed for several uses. amonq them 
determining the minimum number of test cases required to test every statement 
in a program and as a method of controlling module size. McCabe suqqests that 
a v(G) greater than ten may lead to testing and maintenance oroblems. 

The proqram presented to compute McCabe's cyclomatic number is written in 
Pascal and computes the cyclomatic number as a function of the decision nodes 
in a program module. A user settable switch is provirled to allow the ootional 
viewing of the decision nodes as a module analysis aid. The program will 
handle any number of FORTRAN modules (main programs. subroutines. functions) 
in the file it examines as long as each has it's own "END" statement. 

BACKGROUND 

McCabe's c.vclomatic number is a program flow complexity metric taken from 
Graoh theory by defining a mapping between a oroqram module and a directed 
graph classically called the program control graph. Blocks of sequential code 
are mapped into the nodes. and transfers of control between blocks into the 
arcs of the qraph. 

The cyclomatic number (v(G)) of any graph G withe edqes. n nodes and P 
connected components (in this case. the number of connected components can be 
assumed to be one) is defined to be: 

v(G) = e - n + 2o ( 1) 

The cyclomatic number is the number of linearly independent paths throuqh 
the qraph. which when taken in combination generate all possible paths throuqh 
the qraph. So. by the mapping. the maximum number of 1 inearl.v independent 
oaths through the program module is given by the cyclomatic number. In his 
paper. McCabe shows that v(G) may also be computed by: 

v(G) = d + 1 ( 2) 

where d is the sum of one less than the number of outgoing arcs from each 
decision node. (A decision node is a node that has two or more outgoing arcs.) 

5 
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Figure 1 

FUNCTION SIMPSN(FUNC,XMIN,XMAX,N) 
c 
C ... THIS FUNCTION INTEGRATES A FUNCTION BY SIMPSON ' S 
C ... RULE; FUNC IS THE NAME FOR THE DUMMY FUNCTION TO 
C ... BE INTEGRATED 
c 

H=(XMAX-XMIN)/N 
SUM=O . O 
X=XMIN+H 
DO 10 I =2, N 
IF (MOD(I,2).EQ.O)THEN 

SUM=SUM+4.*FUNC(X) 
ELSE 

SUM=SUM+2,*FUNC(X) 
ENDIF 
X=X+H 

10 CONTINUE 
SIMPSN=H/3 . *(FUNC(XMIN)+SUM+FUNC(XMAX)) 
RETURN 
END 

In figure 1 a simple FORTRAN module is presented. In figure 2 this 
module is broken into blocks that represent nodes in graphical form. Figure 3 
shows the equivalent program flow graph. 
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Figure 2 

FUNCTION SIMPSN(FUNC,XMIN,XMAX,N) 
c 
c 
c 
c 
c 

.. . THIS FUNCTION INTEGRATES A FUNCTION BY SIMPSON ' S 

. . , RULE; FUNC IS THE NAME FOR THE DUMMY FUNCTION TO 

. . . BE INTEGRATED 

c---------------------- ------1-node 
c v 

H=(XMAX-XMIN)/N 
SUM=O . O 
X=XMIN+H 

A -----------------------

C----------------------------1-node B - ( loopldec isi on) )------
C V 

00 10 I=2, N 
c- --------------------------- 1-node c - (deci s ion)----- - ------
c v 

IF (MOO (I , 2) • EQ . 0) THEN 
c----------------------------1-node 0 -----------------------
c v 

SUM=SUM+4,*FUNC(X) 
C----------------------------1-node E -- - - - ---- ------- -------
C v 

ELSE 
SUM=SUM+2 , *FUNC(X) 

END IF 
C----------------------------1-node F -----------------------
C v 

X=X+H 
10 CONTINUE 
C---- - -------------- - --------1-node G - ---- ---- --- -----------
C v 

SIMPSN=H/3 , *(FUNC ( XMIN)+SUM+FUNC(XMAX)) 
RETURN 
END . 

c------------------------------------------------------------
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Figure 3 
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By counting the number of nodes and edqes and apolyinq (1). or 
equivalently counting the number of decision nodes and applying (2). the 
cyclomatic number of the FORTRAN proqram module may be obtained. In the 
example above: 

v(G) = e - n + 2p = 8 - 7 + 2 = 3 

or 

v(G) = d + 1 = 2 + 1 = 3 

In particular. each of the following sets of oaths is a basis for the 
graoh in figure 3: 

where: 

~B CD F B. B C E F B. A B G} 

{A B C D F B G. A B C E F B G. A B G} 

B C D F B = A B C D F B G - A 8 G 

B C E F 8 = A 8 C E F 8 G - A B G 

Some properties of v(G) of interest follow: 

1. v(G) depends only on the decision structure of G. 

( 3) 

( 4) 

2. Addinq or delettng function nodes in .the module does not change v(G). 

8 

3. The total cvclomatic number of a oroqram is equal to the sum of the 
c.vclomatic numbers of the modules. 
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APPLICATIONS 

The cyclomatic number bounds the minimum number of test cases that 
exercise all the statements in a program module. Since a program may have an 
infinite number of paths through it {an example is DO WHILE (Niagara Falls}), 
it is not always possible to check every path. However, it is possible to 
check every statement. Since in the traversal of a maximal set of linearly 
independent paths every node of the program control graph is visited, the 
cyclomatic number is an upper bound on the minimum number of tests required to 
visit all statements in a program module. For example, we draw the reader's 
attention to the basis set (4) for Figure 3. where only two of the three paths 
have to be traversed to visit every statement in the program. On the other 
hand. traversing all paths in a basis set guarantees that every arc in the 
program control graph is also traversed. Thus, if one can identify a basis of 
v{G) paths (like (4)) that traverse the program control graph from entry node 
to exit node, and select a corresponding set of v(G) tests that visit these 
paths, then one can exercise every transfer of control between program blocks, 
as well as every statement in the program. 

It should be pointed out that having each and every transfer of control 
traversed at least once is more stringent than having each and every statement 
executed at least once. This is so because visiting each and every transfer 
of control implies that every statement in the module is executed, but not 
conversely. This is illustrated in Figure 4, where traversal of the path ·PQR 
executes every statement in the program but fails to execute the branch {P,R). 

Figure 4 

F 

9 
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However, it should be emphasized that the Pascal program described in the 
next two sections computes only the cyclomatic number. Developing a program 
that identifies a basis set of paths is a matter that requires further study. 
In any event, the cyclomatic number can be used to improve a program module's 
testability- if a module's v(G} is greater than some threshold value, then it 
should be redesigned to drive its v(G) below the threshold, so that a smaller 
basis set of tests will visit every statement in the program. Although McCabe 
suggests a threshold value of 10, this value is by no means sacrosanct. 

ALGORITHM 

The Pascal program computes the cyclomatic number by operating on all the 
decision nodes in a file until it encounters a FORTRAN "END" statement. Each 
decision node is converted into a positive integer that is accumulated in a 
running sum. When an "END" statement is detected, the number one is added to 
the sum and then the result is displayed as the cyclomatic complexity count 
for the module. · The running sum is then set to zero and the process repeated 
until the end of the file is reached. 

Specific decision nodes are found by ignoring FORTRAN comments and 
building complete FORTRAN statements from the remaining source. When a 
FORTRAN statement is completed, it is examined for keywords. If the statement 
is identified as a decision node, then either the number one or one less than 
the number of exits from the decision node is added to the running sum. 
Otherwise, the statement is discarded and the next statement is constructed 
and examined. If an "END" statement is detected, the cyclomatic number is 
computed and displayed. When an end of file condition is detected, the 
program ends. 

Because the program examines statements in this manner, there is no limit 
on the number of lines in the FORTRAN source file or on the number of modules 
in the file. The maximum number of decision nodes that it will count in any 
one module is limited only by the respective (UNIVAC or VAX) Pascal's maximum 
integer (MAXINT). The program accepts ANSI-77 FORTRAN and recognizes the 
decision nodes shown in Figure 5. 

The Pascal program will not process FORTRAN modules that contain tab 
characters. Tab characters may be removed by using the CLEAN utility program 
[ 4 J. 

10 
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Figure 5 

Tne Pascal program recognizes tne fol luwing FORTRAN control 
structures and assigns eacn a complexity c~unt ot 1: 

1 l DO I oops 
DO <label> <integer variable>= <field>,<field> 

2) { Block DO loops } 
DO <integer variable> <field>,<field> 

END DO 

3) DO WHILE loops I 
DO <label> WHILE t<ooolean expression>) 

4) Block 00 WHILE luu~s } 
DO WHILE (<oo~lean expression>) 

END DO 

bl Logical IF} 
IF (<boolean expression>) <FORTRAN key word> 

bl Logical IF in ELSE clause 
ELSE IF (<ooolean expression>) <FORTRAN key word> 

Tne Pascal program assigns tne complexity numoer of one less 
tna11 tne numoer of unique statement labels in tne associated 
label list of eacn of tne following control structures: 

7) Arithmetic IF } 
IF( <variaol e>) < laoe 11>, <I ao.e 12>, < 1 aoe13> 

B) Arithmetic IF in ELSE clause } 
ELSE lf(<variaole>}<laOel t>,<labe12>,<1abe13> 

9) Computed GOTU ) 
GOTO(<labell>, ... ,<labeln>l ,<integer variable> 

101 Computea GOTO in ELSE clause } 
ELSE GOTO(< laDe I I>, . . . ,< I abel n> l, <integer variao le> 

Tne Pascal program al l ows Computea GOTO"s and Arithmetic IF 
statements to follow Logical IF's (or ELSE If's) as per ANSI 77(51 

11) (Arithmetic IF following Log i cal IF} 
[ELSE) IF(<boolean expression>) IF(<variaOle>) 

T <laoelt>,<label2>,<1abel3> 

12) (Computed GOTO following Logical IF} 
[ELSE] IF(<boolean expression>) GOTO(·<laoel 1>, .. ,<laoeln>), 
+ <integer variable> 

11 
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USING THE PROGRAM 

In the two examples below. ever.vthinq that the user would type is 
unrlerlined. 

I. Usinq the Proqram on the VAX {V701. V703. V70A) 

To comoute the cyclomatic comolexity of the oroqram in fioure 1 on the 
VAX the followinq DCL ma.v be used, where CYCL TEST .FOR is the file name of the 
oroqram in fiqure 1. 

$ASSIGN/USER MODE CYCLETEST.FOR INFILE 
$ RUN [MJG.CLEAN]CYCL 

orint out decision nodes ? <y,n>: Y 

DO 10 1=2.N 
IF (M00(1.2).EQ.O)THEN 

McCabe's cyclomatic number for module 1 is 3. 

<ENOFILE> 

The utility is not case sensitive. If the Tab-Formatting feature availabl~ 
with the VAX FORTRAN has been used, the CLEAN utility will have to be used before 
invoking the cyclomatic number program [41. 

II. Using the Program on the UNIVAC: 
. . . .. 

On the UNIVAC, the c.vclomatic number proqram may he found in 
CYCL*PAS.UTIL on node 2 in New London. For the followinq samole runstream an 
imaqinarv FORTRAN source element of FOO*BAR.CYCLTEST which holds the ornaram 
qiven in Fiqure 1 will be used. 

12 

>'i>ASG. A FOO*BAR. 
>READY 
YAIASG. T I NF I LE. 
>READY 
~EO FOO*BAR.CYCLTEST.INFILE. 
~XQT CYC[*PAs.OTtL 
> 
> print out decision nodes ? <.Y,n>: ! 
> 
> 

> 

DO 10 1=2. N 
IF (MOD(I.2).EQ.O)THEN 

>McCabe's cyclomatic number for module 1 is 3. 
> 
> <ENOFILE> 
> 
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CONCLUSION 

A Pascal program is presented which computes McCabe's cyclomatic number, 
the cardinality ot any basis set of control flow paths through a program 
module. Since all paths through the module may be generated from a basis set, 
the cyclomatic number bounds the minimum number of tests needed to exercise 
every transfer of control between program blocks in the program module, as 
well as every program statement. Therefore, the Pascal program may be used to 
earmark program modules for redesign that require a large number of tests to 
validate the correctness of every transfer of control. The redesign effort 
should strive to reduce the cyclomatic number of any program module to some 
acceptable threshold value in order to improve the module's maintainability 
with respect to it's testability. 

13 
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